Matrix Factorization (Decomposition)
Table of contents
- 1. LU decomposition by Gaussian Elimination
- 1+. Cholesky decomposition (for symmetric)
- 2-1. CR decomposition
- 2-2. QR decomposition
- 3-1. Eigenvalue decomposition (Diagonalization)
- 3-2. on Symmetric matrix $S$
- 4. Singular Value decomposition (SVD)
- 4+. Polar Decomposition
| Factorization Decomposition | meaning | |
|---|---|---|
| LU Cholesky | $ A=LU=LDU’ $ $S=A^TA$ | only by substitution → more efficient than LU | 
| CR QR | $ A=CR $ $ A=QR’ $ | $Q^{-1} = Q^T$ ( $Q^TQ=I$ ) | 
| Diagonalization | $A = X \Lambda X^{-1} $ $ S = Q \Lambda Q^T$ | power, but inverse → if symmetric, no inverse (Spectral Theorem) | 
| SVD | $A = U \Sigma V^T$ | generalized eigenvalue decomposition | 
1. LU decomposition by Gaussian Elimination
\[A=LU \rightarrow A=LDU'\]$L$ : lower triangular matrix with diagonal $\mathbf{1}$.
 $U$ : upper triangular matrix
 $D$ : diagonal matrix = matrix($diag(U)$) : row operation($U \rightarrow U’$)
 $U’$ : upper triangular matrix with diagonal $\mathbf{1}$.
1+. Cholesky decomposition (for symmetric)
\[A=LU=LDU' \rightarrow S=LDL^T=A^TA\]$S$ : positive definite matrix
 $A$ : upper triangular matrix
 $\phantom{A\text{ :}}$ with independent columns, and diagonal entries are $\sqrt{\text{pivot}}$
2-1. CR decomposition
\[A=CR \rightarrow A=QR'\]$C$ : matrix of independent columns of A(: rectangular)
 $R$ : rref without $\mathbf{0}$ rows. $ = ( I_{\text{rank}(A)}|\mathbf{v}_i )$ where $C\mathbf{v}_i$ : ith dependent column of $A$
2-2. QR decomposition
: special case of CR decomposition
 $Q$ : orthogonal matrix by Gram-Schmidt ($Q^T Q = I$)
 $R’$ : column operation($Q \rightarrow Q’$) $\times R$
3-1. Eigenvalue decomposition (Diagonalization)
\[A = X \Lambda X^{-1} \rightarrow S = Q \Lambda Q^T\]$A$ : square matrix with full independent eigenvectors
 $\Lambda$ : $diag(\text{eigenvalues})$
 $X$ : matrix with corresponding eigenvectors as columns
3-2. on Symmetric matrix $S$
$S$ : symmetric matrix
 $\Lambda$ : $diag(\text{eigenvalues})$
 $Q$ : matrix with corresponding orthonormal eigenvectors as columns
4. Singular Value decomposition (SVD)
\[A = U \Sigma V^T\]$A$ : rectangular matrix
 $\Sigma$ : singular values
 $U$, $V$ : orthonormal singular vectors
4+. Polar Decomposition
\[A = U \Sigma V^T = (UV^T)(V\Sigma V^T) = QS\]$Q$ : orthogonal (rotation)
 $S$ : symmetric (stretching)