Rank
Table of contents
- 1. Rank-Nullity Theorem (Dimension Theorem)
- 2. The Four Fundamental Subspaces ★★★
- 3. properties
- 4. Incidence Matrix in Graph Theory
1. Rank-Nullity Theorem (Dimension Theorem)
\[A : m \times n\] \[\text{rank}(A) + \text{nullity}(A) = n\] \[\text{dim }C(A^T) + \text{dim }N(A) = n\]or
\[f : V \rightarrow W\] \[\text{dim} V = \text{dim Im} f + \text{dim Ker} f\]2. The Four Fundamental Subspaces ★★★
\[A \mathbf{x} = \mathbf{0}\] \[\rightarrow (\text{ith row of }A) \cdot x = 0 \rightarrow \forall \text{row of }A \perp \forall x \in N(A)\] \[\rightarrow C(A^T) \perp N(A)\] \[\rightarrow C(A) \perp N(A^T)\]3. properties
- $\text{rank}(AB) \le \text{rank}(A), \quad \text{rank}(AB) \le \text{rank}(B)$
- $\text{rank}(A+B) \le \text{rank}(A) + \text{rank}(B)$
- $\text{rank}(AA^T) = \text{rank}(A^TA) = \text{rank}(A) = \text{rank}(A^T)$
- $\text{rank}(AB)=r$ if $ A_{ m \times r}, B_{ r \times n}$ has same $\text{rank}=r$ ★★★
- $\text{rank}(AB) \ne \text{rank}(BA)$