Link Search Menu Expand Document

Well-known Distributions

Table of contents


Discrete Distributions

summary

Distributionpmf / domainmeanvariancemgf
Bernoulli
$\text{Bernoulli}(p)$
$p^x q^{1-x}$
$\small x = 0, 1$
$p$$pq$$q+pe^t$
binomial
$B(n,p)$
$\dbinom{n}{x}p^x q^{n-x}$
$\small x = 0, 1, \cdots, n$
$np$$npq$$(q+pe^t)^n$
hypergeometric
$h(N, M, n)$
: 비복원추출
$\dfrac{\dbinom{M}{x}\dbinom{N-M}{n-x}}{\dbinom{N}{n}}$
$\small x = 0, 1, \cdots, \min \lbrace n,m \rbrace$
$n \dfrac{M}{N}$$n \dfrac{M}{N} \dfrac{N-M}{N} \dfrac{N-n}{N-1}$skip
geometric
$Geo(p)$
: 시도 횟수
$pq^{x-1}$
$\small x = 1, 2, \cdots$
$\dfrac{1}{p}$$\dfrac{q}{p^2}$$\dfrac{pe^t}{1-qe^t}$
negative binomial
$\text{Negbin}(r, p)$
: $\underset{r}{\bigoplus} Geo(p)$
$\dbinom{x-1}{r-1} p^r q^{x-r}$
$\small x = r, r+1, \cdots$
$r \cdot \dfrac{1}{p}$$r \cdot \dfrac{q}{p^2}$$(\dfrac{pe^t}{1-qe^t})^r$
Poisson
$\text{Poi}(\lambda)$
$\dfrac{e^{-\lambda} \lambda^x}{x!}$
$\small x = 0, 1, \cdots$
$\lambda$$\lambda$$e^{\lambda(e^t - 1)}$

relations

figure

Continuous Distributions

Distributionpdf / domainmeanvariancemgf
uniform
$U(a,b)$
$\dfrac{1}{b-a}$
$\small x \in (a,b)$
$\dfrac{a+b}{2}$$\dfrac{(b-a)^2}{12}$$\begin{cases} \dfrac{e^{bt} - e^{at}}{(b-a)t} &(t \ne 0) \ 1 &(t = 0)\end{cases}$
/
$\dfrac{1}{(b-a)t} \sum\limits_{k=0}^\infty \dfrac{b^k - a^k}{k!} t^k$
normal
$N(\mu, \sigma)$
$\dfrac{1}{\sqrt{2\pi}\sigma} \exp (-\dfrac{1}{2}\left(\dfrac{x-\mu}{\sigma}\right)^2)$
$\small x \in (-\infty, \infty)$
$\mu$$\sigma$$\exp \left( \mu t + \dfrac{1}{2}\sigma^2 t^2 \right)$
exponential
$\exp(\beta)$
$\small \lambda = \dfrac{1}{\beta}$
$\begin{aligned} &(1) \dfrac{1}{\beta} e^{-x/\beta} \ &(2) \lambda e^{-\lambda x} \end{aligned}$
$\small x \gt 0$
$\begin{aligned} &(1) \beta \ &(2) \dfrac{1}{\lambda} \end{aligned}$$\begin{aligned} &(1) \beta ^2 \ &(2) \dfrac{1}{\lambda ^2} \end{aligned}$$\begin{aligned} &(1) \dfrac{1}{1-\beta t} \ &(2) \dfrac{\lambda}{\lambda - t}\end{aligned}$
gamma
$\text{Gamma}(\alpha, \beta)$
$\small \lambda = \dfrac{1}{\beta}$
$\dfrac{1}{\Gamma (\alpha) \beta ^\alpha} x^{\alpha - 1} e^{-x/\beta}$$\alpha \beta$$\alpha \beta ^2$$\left( \dfrac{1}{1-\beta t} \right) ^\alpha$
beta
$\text{Beta}(\alpha, \beta)$
$\dfrac{1}{\Beta(\alpha, \beta)} x^{\alpha -1} (1-x)^{\beta -1}$
$\small x \in (0, 1)$
$\dfrac{\alpha}{\alpha + \beta}$$\dfrac{\alpha \beta}{(\alpha + \beta + 1)(\alpha + \beta)^2}$skip

relations

figure